Entropy redistribution controls allostery in a metalloregulatory protein.
نویسندگان
چکیده
Allosteric communication between two ligand-binding sites in a protein is a central aspect of biological regulation that remains mechanistically unclear. Here we show that perturbations in equilibrium picosecond-nanosecond motions impact zinc (Zn)-induced allosteric inhibition of DNA binding by the Zn efflux repressor CzrA (chromosomal zinc-regulated repressor). DNA binding leads to an unanticipated increase in methyl side-chain flexibility and thus stabilizes the complex entropically; Zn binding redistributes these motions, inhibiting formation of the DNA complex by restricting coupled fast motions and concerted slower motions. Allosterically impaired CzrA mutants are characterized by distinct nonnative fast internal dynamics "fingerprints" upon Zn binding, and DNA binding is weakly regulated. We demonstrate the predictive power of the wild-type dynamics fingerprint to identify key residues in dynamics-driven allostery. We propose that driving forces arising from dynamics can be harnessed by nature to evolve new allosteric ligand specificities in a compact molecular scaffold.
منابع مشابه
Energetic redistribution in allostery to execute protein function.
A perturbation at one site of the protein could cause an effect at a distant site. This important biological phenomenon, termed the “allosteric effect,” is essential for protein regulation and cell signaling, playing an important role in cellular function. Its fundamental functional significance has inspired numerous works aiming to understand how allostery works. Allostery can involve large, o...
متن کاملEntropy Transfer between Residue Pairs and Allostery in Proteins: Quantifying Allosteric Communication in Ubiquitin
It has recently been proposed by Gunasakaran et al. that allostery may be an intrinsic property of all proteins. Here, we develop a computational method that can determine and quantify allosteric activity in any given protein. Based on Schreiber's transfer entropy formulation, our approach leads to an information transfer landscape for the protein that shows the presence of entropy sinks and so...
متن کاملRigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery
Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2) in the human PTP1E protein is examined as model system to advance a recently de...
متن کاملHidden electrostatic basis of dynamic allostery in a PDZ domain.
Allosteric effect implies ligand binding at one site leading to structural and/or dynamical changes at a distant site. PDZ domains are classic examples of dynamic allostery without conformational changes, where distal side-chain dynamics is modulated on ligand binding and the origin has been attributed to entropic effects. In this work, we unearth the energetic basis of the observed dynamic all...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 17 شماره
صفحات -
تاریخ انتشار 2017